skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vakser, Ilya A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available August 1, 2026
  4. In recent years, the field of structural biology has seen remarkable advancements, particularly in modeling of protein tertiary and quaternary structures. The AlphaFold deep learning approach revolutionized protein structure prediction by achieving near‐experimental accuracy on many targets. This paper presents a detailed account of structural modeling of oligomeric targets in Round 55 of CAPRI by combining deep learning‐based predictions (AlphaFold2 multimer pipeline) with traditional docking techniques in a hybrid approach to protein–protein docking. To complement the AlphaFold models generated for the given oligomeric state of the targets, we built docking predictions by combining models generated for lower‐oligomeric states—dimers for trimeric targets and trimers/dimers for tetrameric targets. In addition, we used a template‐based docking procedure applied to AlphaFold predicted structures of the monomers. We analyzed the clustering of the generated AlphaFold models, the confidence in the prediction of intra‐ and inter‐chain residue‐residue contacts, and the correlation of the AlphaFold predictions stability with the quality of the submitted models. 
    more » « less
    Free, publicly-accessible full text available June 6, 2026
  5. Association of proteins to a significant extent is determined by their geometric complementarity. Large-scale recognition factors, which directly relate to the funnel-like intermolecular energy landscape, provide important insights into the basic rules of protein recognition. Previously, we showed that simple energy functions and coarse-grained models reveal major characteristics of the energy landscape. As new computational approaches increasingly address structural modeling of a whole cell at the molecular level, it becomes important to account for the crowded environment inside the cell. The crowded environment drastically changes protein recognition properties, and thus significantly alters the underlying energy landscape. In this study, we addressed the effect of crowding on the protein binding funnel, focusing on the size of the funnel. As crowders occupy the funnel volume, they make it less accessible to the ligands. Thus, the funnel size, which can be defined by ligand occupancy, is generally reduced with the increase of the crowders concentration. This study quantifies this reduction for different concentration of crowders and correlates this dependence with the structural details of the interacting proteins. The results provide a better understanding of the rules of protein association in the crowded environment. 
    more » « less
  6. Abstract Structural information of protein–protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. TheDockgroundresource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently,Dockgroundcontains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model–model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. TheDockgroundbound proteins dataset is a core set, from which otherDockgrounddatasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein–protein complexes. This report on theDockgroundresource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a newDockgroundinteractive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy. 
    more » « less
  7. Computational methodologies are increasingly addressing modeling of the whole cell at the molecular level. Proteins and their interactions are the key component of cellular processes. Techniques for modeling protein interactions, thus far, have included protein docking and molecular simulation. The latter approaches account for the dynamics of the interactions but are relatively slow, if carried out at all-atom resolution, or are significantly coarse grained. Protein docking algorithms are far more efficient in sampling spatial coordinates. However, they do not account for the kinetics of the association (i.e., they do not involve the time coordinate). Our proof-of-concept study bridges the two modeling approaches, developing an approach that can reach unprecedented simulation timescales at all-atom resolution. The global intermolecular energy landscape of a large system of proteins was mapped by the pairwise fast Fourier transform docking and sampled in space and time by Monte Carlo simulations. The simulation protocol was parametrized on existing data and validated on a number of observations from experiments and molecular dynamics simulations. The simulation protocol performed consistently across very different systems of proteins at different protein concentrations. It recapitulated data on the previously observed protein diffusion rates and aggregation. The speed of calculation allows reaching second-long trajectories of protein systems that approach the size of the cells, at atomic resolution. 
    more » « less
  8. Soares, Claudio M. (Ed.)
    Membrane proteins are significantly underrepresented in Protein Data Bank despite their essential role in cellular mechanisms and the major progress in experimental protein structure determination. Thus, computational approaches are especially valuable in the case of membrane proteins and their assemblies. The main focus in developing structure prediction techniques has been on soluble proteins, in part due to much greater availability of the structural data. Currently, structure prediction of protein complexes (protein docking) is a well-developed field of study. However, the generic protein docking approaches are not optimal for the membrane proteins because of the differences in physicochemical environment and the spatial constraints imposed by the membranes. Thus, docking of the membrane proteins requires specialized computational methods. Development and benchmarking of the membrane protein docking approaches has to be based on high-quality sets of membrane protein complexes. In this study we present a new dataset of 456 non-redundant alpha helical binary interfaces. The set is significantly larger and more representative than the previously developed sets. In the future, it will become the basis for the development of docking and scoring benchmarks, similar to the ones for soluble proteins in the Dockground resource http://dockground.compbio.ku.edu . 
    more » « less